
1 
 

 

A long-distance travel demand model for Europe 

Jeppe Rich1 

Stefan L. Mabit  

------- 

DTU Transport, Technical University of Denmark 

Bygningstorvet 1, Kgs. Lyngby - 2800, Denmark 

Abstract 

In Europe, more than 50% of all passenger kilometres come from trips beyond 100 km. 

This accounts for an even larger share of CO2 emissions due to a higher modal share 

of air transport. Therefore long-distance trips are increasingly relevant from a political 

and environmental point of view. The paper presents the first tour-based long-distance 

travel demand model for passenger trips in and between 42 European countries. The 

model is part of a new European transport model developed for the European 

Commission, the TRANSTOOL II model, and will serve as an important tool for 

transport policy analysis at a European level. Methodologically, the model is formulated 

as a nested logit model and estimated based on travel diary data with segmentation 

into business, private, and holiday trips. The model estimation is analysed and 

elasticities for a number of different level-of-service variables are presented. It is 

revealed that the perception of travel time and cost varies with journey length in a non-

linear way. For car passengers, elasticities increase with the length of the journey, 

whereas the opposite is true for rail, bus, and air passengers – a fact that reflects a 

change in substitutability.  Moreover, elasticities differ significantly by trip purpose with 

private trips having the highest and holiday trips the lowest elasticities.  

 

                                            
1 Corresponding author; phone: +45 45251536, fax: +45 45251564, email: jr@transport.dtu.dk. 
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1 INTRODUCTION 

The opportunity to travel long distances fast at a low cost combined with economic 

growth has made long-distance transport a basic part of people’s activities. According 

to a recent survey (STOA 2008) more than 60% of all people find it important or very 

important to have access to easy and efficient transport across Europe. During the last 

decade (1999-2008) global air passenger traffic has increased by more than 50%. This 

is partly driven by an increase in average travel distances from 791 to 1050 km (Airbus 

2009). Although there has been a temporary decline in air transport as a result of the 

financial crisis, it is expected that air transport in Europe will double in the next 15 

years (Airbus 2009).  

In terms of invested resources in travel demand models (in the past), there is no 

doubt that most resources have been applied to regional and national models, with only 

little attention given to multi-country models. As a result, models capable of analysing 

global and nationwide factors such as climate effects or abilities to meet overall CO2 

targets have been limited. Consequently, the substitutability among long-distance 

modes including air transport and high-speed rail has not been given the same 

attention as substitution between short-range urban modes. From a climate point of 

view and given the needs for analysing the economic efficiency of large-scale 

European infrastructure projects, this cannot be justified.  

 To our knowledge, the model presented in this paper is the first tour-based 

multi-country model which has been estimated on disaggregate data and subsequently 

implemented for policy analysis. The model is part of the TRANS-TOOL II model 
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framework (TRANS-TOOL 2008), which will form the basis for transport policy analysis 

by the European Commision with respect to climate, infrastructure, and economic 

development.  In the model, we apply a generation-attraction (GA) approach, in that we 

consider tours (trip chains) rather than single trips (Adler and Ben-Akiva 1979). This 

approach is especially relevant for longer trips and in particular for trips crossing 

country borders. The point is that there may be substantial differences among the 

attributes of people in different zones and countries. If a trip-based approach was used, 

the out and return trip would be considered separately and assigned different 

attributes. An example would be a Swedish person travelling to Albania. Although the 

person would be correctly represented as a Swedish person on the way out, he would 

be represented as an Albanian going to Sweden on the return trip. As there are great 

differences in income level, car ownership, gross domestic product (GDP), and the 

value of time (VoT) it makes quite a difference as regard the choice of mode to 

consider the complete journey compared to a single trip. 

 The mode- and destination choice model is linked to a frequency model by a 

logsum measure to account for accessibility effects in the trip generation. However, in 

the present paper we only consider the distribution model covering mode and 

destination choice. The reason is that the demand sensitivity in the presented model 

then only represents substitution effects, which can be more easily compared to other 

findings. If we were to consider income effects and induced traffic, the interpretation of 

the model results would be less clear. 

 Next, in Section 1.1, the paper reviews literature on long-distance modelling. 

Section 2 discusses data with emphasis on the DATELINE survey. In section 3, we 

discuss the model structure. Section 4 is about estimation, while section X5 X presents the 

elasticity results. Finally, in section 6 a conclusion is offered. 
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1.1 Review of long-distance demand modelling 

Most of the work on long-distance models is connected with the development of 

national models. An overview of European national models is given in Lundqvist and 

Mattsson (2002).F

2
F In terms of establishing a methodological reference point, the Dutch 

National model (HCG 1990) and the Swedish national model (Beser and Algers 2002) 

are among the best documented and most influential models. Other models include the 

PETRA (Fosgerau 2002) model for Denmark. The Norwegian national model described 

in Lindfjord and Ramjerdi (1994) and the Italian national model described in Russo 

(2002) also represent state-of-the-art models based on many of the ideas put forward 

in the Dutch national model.  

 The common approach for dealing with long-distance trips in most of these 

models has been to make separate models for these trips, i.e. exogenous stratification. 

The models are typically combinations of a trip frequency or trip generation model, a 

destination model, and a mode choice model with the inclusion of an air alternative. 

Another common feature is exogenous stratification by trip purpose, although 

experiments with endogenous stratification have been considered in Beser (2003; 

Chapter 2) for the Swedish national model, SAMPERS. In terms of estimation 

techniques, usually a standard nested logit approach has been used. It is worth noting 

that the nesting structure of the SAMPERS long-distance model (Beser 2003; Chapter 

4), with a nesting structure where mode is conditional on destination, is identical to the 

structure found in the present paper.   

 Models representing several countries, i.e. multi-country models, are not often 

seen for passenger traffic. An example, however, is the TRANS-TOOLS I model as 

described in (TRANS-TOOLS 2005). Although this model is the most recent and 

constitutes one of the more advanced models covering all of Europe, it is not very 

sophisticated in terms of its passenger demand model. The model, referred to as the 
                                            
2 Attention should also be given to Fox et al. (2003) which gives an overview of the models 
developed by RAND Europe. 
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VACLAV model, is trip-based and not capable of consistently measuring the impacts of 

zone-based data. Moreover, the choice of mode and the choice of destination are not 

estimated jointly. Another limitation is that the model is not stratified according to long- 

and short-distance trips, which is a problem considering the different nature of these 

trips (Hubert and Potier 2003). The STREAMS model (Williams 2002), STEMM 

(Gaudry 2002), and SCENES (SCENES 1999) can all be seen as forerunners for the 

TRANS-TOOLS models and generally involve a less sophisticated approach in terms 

of demand modelling. SCENES, the most recent of the three (completed in 2001), 

resembles a classic 4-stage model.   

The journey distance including its impact on model outputs and relationship to 

functional form specifications is a general theme in long-distance modelling. In an 

analysis of mode choice of intercity passengers in Germany Mandel et al. (1997) 

highlight the importance of functional form. Recently, Gaudry (2008) summarised some 

of the findings with particular reference to non-linear responses due to high-speed rail 

supply. Most recently, Daly (2008) opened the discussion from a theoretical point of 

view, with the main finding that the own-demand elasticity due to travel cost should 

increase with distance.  

 

2 DATA 

The construction of a large-scale multi-country model demands several sources of 

input data, see Axhausen et al. (2003) for an elaborate discussion of data collection 

issues for long-distance trips. In our study, the model area includes 1441 zones with 

great variation in geographical size, GDP, and population. An illustration of the zone 

system is presented in Figure 1 below.  
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<Figure 1> 

Figure 1: The TRANS-TOOLS II model area with zone borders.  

 

The most detailed zone structure is for Germany and Benelux, whereas Russia, 

Belarus, Ukraine, Turkey, Sweden, and Norway are represented by very large zones. 

Iceland is also represented but not included on the map. Our data consist of 3 

elements that we present next: a travel survey, level-of-service (LoS) variables, and 

zone data. 

 

2.1 The DATELINE survey 

The travel diary data used is known as DATELINE (DG-TREN 2000). DATELINE 

represents a “diary type” survey in the sense that people were asked to provide 

information about their past travel history. The past in this context differs by purpose 

and is summarised in XTable 1X below. 

 

Purpose Period of record Weights
Business 3 months 4 
Holiday 1 Year 1 
Private 3 month 4 
Commuters 4 weeks 10.5 

Table 1: Duration of interview periods and corresponding “weights”. 

 

The weights in XTable 1X are the naïve weights that bring the survey to an annual basis 

and enable a comparison across trip purposes. The overall shares of trip purposes and 

modes can be seen in XTable 2X below.  

 

Purpose Frequency Percentage Mode Frequency % 
Business 43420 29.17% Air 22597 15.18% 
Holiday  73326 49.26% Bus 11900 7.99% 
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Private 27221 18.29% Car 97917 65.78% 
Commuters 4882 3.28% Train 16435 11.04% 
Sum of trips 148849   Sum of trips 148849   

Table 2: Distribution of one-way trips by purpose and by mode adjusted to a 

year base. 

 

A cross tabulation among trip purposes and modes (weighted according to XTable 1X) 

reveals that commuters only cover 0.42% of the trips. Table 2 also exposes the 

dominant position of car use for all purposes. Moreover, it is clearly seen that the air 

alternative is more frequently used for business and holiday trips, whereas, for private 

trips, air trips only account for 2.4%.  

There are some specific issues concerning the DATELINE data that should be 

taken into consideration. Firstly, the data only cover EU27. Second, individual income 

data were not available. As a result, income effects are modelled by means of zone-

specific GDP. Thirdly, due to the revealed-preference (RP) nature of the DATELINE 

survey, there were problems in identifying in-vehicle-time and out-of-pocket-costs 

separately. As a result, we have applied country-wide VoT estimates to produce a 

generalised in-vehicle-cost measure. Finally, the DATELINE survey does not include 

many commuting trips. These have been pooled with business trips. 

 

2.2 Level-of-service data 

The model is estimated for four modes: car as driver, bus, rail, and airplane. All of the 

modes are assigned on their respective network except for busses. The set of LoS 

variables across modes is shown in XTable 3X.  

 

LoS component Description Car / 
Bus 

Rail Air 

Out-of-pocket costs Monetary variable costs (fuel, 
tickets) X X X 

In-vehicle-time Time spend “in the seats” X X X 
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Congestion time The time cars are running in 
congestion X   

Ferry time Time used at ferry crossings X X  
Access-Egress time Access-egress time for air and rail  X X 
Frequency Frequency of rail  X  
Headway time Headway (frequency proxy) for air   X 
Transfer Time Transfer time for air   X 

Table 3: Outline of level-of-service variables. 

 

The LoS variables for all modes are based on stochastic user equilibrium assignments. 

This includes fairly advanced assignments for air as well as rail. However, busses are 

not assigned but given a set of pre-fixed costs and travel time variables. The same is 

true for the cost component for rail. This information was not available prior to the 

modelling exercise and was estimated in a separate analysis on the basis of a sample 

for rail ticket costs.  

 

2.3 Value-of-time and zone data  

It has not been possible to properly estimate VoT measures based on the DATELINE 

survey. Moreover, even if it was possible, the weak coverage for large parts of Europe 

would force an external VoT estimate for these areas anyhow. As a result, it was 

decided to create a country-wise VoT table divided by trip purpose based on a sample 

of VoT studies. By combining a purchasing power parity index with this sample, a 

complete table was generated (Rich et al. 2009).  

The zone data in the model include population, hotel capacity, jobs, and GDP. All 

variables are based on EUROSTAT, however, for countries not covered by 

EUROSTAT (i.e. Russia, Belarus, and Ukraine) national statistics were used. For 

zones not covered by EUROSTAT and national statistics, we calculated proxies (Rich 

et al. 2009).  
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3 MODEL SPECIFICATION 

3.1 Definition of tours and trips 

In the model, we apply a GA approach, in that we consider tours (trip chains) rather 

than single trips. As discussed in the introduction, this is an important improvement 

compared to models based on single open-ended trips such as the VACLAV model 

(TRANS-TOOLS 2005). This is especially true for long-distance tours, because 

individuals from different parts of Europe will be very heterogeneous. A trip-based 

modelling approach will assume that attributes are always formed in the trip departure 

region, irrespectively that the trip is part of a journey and should be based on the 

departure region of the journey (e.g. the residential zone). This holds for attributes 

related to income, car ownership, and the VoT. 

In the model, we have assumed that journeys are converted into tours by 

attaching a main mode and a main destination. For private trips and holiday trips, we 

only allow home-based tours. For business journeys, however, we allow non-home 

based tours, with an attached main mode and main destination. For business trips 

there may be many trips in a chain, however, all sub-trips (not origin and final 

destination) are excluded. XFigure 2X below illustrates two typical examples of reduced 

trip chains.  

 

<Figure 2> 

Figure 2: Illustration of how trip chains are converted to simple home-based tours.  

 

To the left in XFigure 2X, a typical holiday trip pattern is illustrated. It consists of a long 

journey (e.g. airplane to the Canary Island) and excursions departing from the main 
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destination. In the model only the trip to the main destination is maintained, whereas 

trips to the secondary destinations are left out. 

To the right in XFigure 2X, a typical business or private trip pattern is shown. It 

may consist of a main destination and a number of sub-trips on the way to the main 

destination. However, all secondary destinations are considered as detours and 

excluded. As a result, only the trip from the home to the main destination is maintained. 

Compared to the illustration to the left, this trip chain reduction may well produce a new 

synthetic set of trips which was not in the original set of trips.  

 The consequences of the trip chain reductions may seem more critical than 

they are. Firstly, since the majority of the excursions are below 100 km these trips 

would not be included in the long-distance model anyhow. Secondly, it should be 

remembered that the objective of the model is to capture overall differences in 

preferences rather than precisely mimic the trip patterns of households. In other words, 

excluded trips will only have impact to the extent preferences differ. In terms of 

excluded mileage, the simplification of trip chains accounts for less than 7% and the 

impact on parameter estimates is considered to be negligible. 

  

3.2 Nested logit formulation 

The model is indexed by which signifies a specific tours, i.e. even though we have a 

panel we estimate it like a cross section for practical reasons. The model is formulated 

as a nested logit model including choice of mode conditional on destination. The 

nesting structure with destination over mode was based on empirical testing. It signals 

that the error for the choice of mode is larger than the error for destination choice. This 

finding is consistent with Beser (2003; Chapter 4).  

 The nested logit choice probabilities for mode  conditional on destination  

are given by 
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(1)   

The logsum term is defined in the usual way by 

(2)   

The upper-level probability for the choice of destination is given by 

(3)   

with . We apply a similar scaling of nests by restricting  for all . 

The latter ensures that cross-substitution elasticities are symmetric and that monetary 

units in the model count equal in all nests. The model is estimated by maximum 

likelihood estimation (MLE). This consists of maximising the log-likelihood function,  

(4)  

where  represents an indicator function for the choice of  for tour . 

 

3.3 Utility functions 

Generally, the utility functions are based on LoS variables that vary for all modes and 

destinations, the number of available cars, and a size variable measuring 

attractiveness of destinations. In the functional form, we have considered a distance-

dependent parameter split (under/over 600 km Euclidian distance) and linear versus 

logarithmic specifications of the generalised travel cost (GTC) variable. The parameter 

split was applied to all models and to all time and cost components. There is very 

strong evidence that the hypothesis of equal parameters for long and short distances 

fails. The second issue regarding functional form has also turned out to be important. 
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Utility functions have been specified as in equation X(5 X) where  = 1(short), 2(long) 

represents the short/long indicator. 

(5)  

More specifically, variables are described as: 

 

Variable name Description 

 The attraction variable that varies over destinations. 

 A sampling correction factor. 

 Generalised travel cost on the basis of In-Vehicle-
Time and out-of-pocket costs (see below) 

 Access-egress time. This variable is only valid for the 
rail and air mode. 

 Rail frequencies. 

 Gross ferry time including on-board ferry time and 
waiting time.  

 Headway time for the air mode. 

 Transfer time for the air mode. 

 Car availability based on the number of private cars 
in the household making tour  (recorded from 
DATELINE). 

Table 4: Description of the model variables. 

 

The definition of  is as follows: 

(6)  
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where  define generalised variable cost,  is a general VoT measure for 

countries and modes, and  is a mark-up used to further scale congestion time (a 

value of = 1.5 has been used).  

 With respect to the functional form of we tested all combinations of trip 

purpose, short ( ) and long ( ), and  = linear and  = log. This involves 

12 models with the unambiguous result in terms of goodness-of-fit as well as model 

validation (in terms of elasticities) that  

(7)    

  

This specification means that, for longer distances, scale effects are avoided. A Box-

Cox functional form was not explored, however, a gamma-form (linear and logarithmic 

included in a parallel way) was not properly identified.  

 

3.4 Destination attractiveness 

The destination alternatives introduce a non-trivial issues with the measurement of 

attractions. The correct way of estimating size variables has been described by Daly 

(1982), however, this approach has not been possible in the present estimation. 

Instead, the form of attraction variables has been estimated prior to the discrete choice 

model. For each trip purpose, we have estimated a log-linear Poisson model by 

regressing , , , and  onto the enumerated trips vectors from the 

DATELINE survey. The resulting form of the size variable that enters the model is 

given by 
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(8) , 

where is the population of zone ,  is the number of jobs,   

represent a bed-place capacity, and  is the gross domestic product. 

The logarithmic specification causes the model to be unaffected by the zone 

system (Daly 1982). In the estimation, we fix the size parameters to unity in order to 

force “demand” proportional to “size” in the model.F

3
F   

 

4 ESTIMATION 

4.1 Sampling of alternatives 

The model operates on a zone structure of 1441 zones. In the present case, the 

destination choice modelling requires sampling of alternatives in order to reduce the 

memory consumption of the model during estimation. At present, the memory 

consumption for the largest model segment (holidays) is above 800 MB. A full-scale 

estimation without sampling would require in the range of 60-120 GB of swop space 

and would not be computationally feasible. In order to reduce the number of destination 

alternatives, an importance sampling strategy based on distance bands has been 

applied. It can be shown (Ben-Akiva and Lerman 1985) that the sample correction term 

 for individual  and distance band  is given by  

(9) , 

where  is the selection probability. 

                                            
3 Estimating the size parameter will usually produce a parameter below unity, indicating a 
limited substitution pattern in a spatial sense. This can be verified by the theory of elemental 
alternatives (Ben-Akiva and Lerman 1985).  
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As consistency as well efficiency of the nested logit estimator is not guaranteed 

under importance sampling, several simulation tests of the parameter sensibility due to 

sampling was tested (Rich et al. 2009). It was evidenced that the sample bias for 20 

sampled destination alternatives was significantly below the standard error of the 

model parameters. 

 

4.2 Parameter estimates 

Model parameters are estimated by MLE using SAS software. In the following, all of the 

parameters and goodness-of-fit measures refer to the sampled version of the model as 

described in section X4.1 X. As a result, the standard errors will be biased compared to the 

un-sampled estimation and the goodness-of-fit will be (upward) biased and indicate 

that the model is actually better than it is. However, parameters will not be biased (at 

least only biased within a narrow band corresponding to approximately 0.5-1% of their 

value according to sampling simulation tests). If we were to calculate corrected 

standard-errors, we would either need to estimate a full-scale model (which is not 

considered an option) or apply bootstrapping, which would also be very time 

consuming. The overall goodness-of-fit report is shown below in XTable 5X. For each 

purpose we report the null log-likelihood (LL(0)), the final log-likelihood, LL(β), and the 

goodness-of-fit measure . In XTable 5X  is defined as with  equal to 

the number of estimated parameters. 

 

Trip purpose Number of 
observations 

LL(0) LL(β)  

Business 6,280 -49,015 -24,089 0.509 
Private 15,141 -97,254 -56,154 0.423 
Holiday 36,358 -519,999 -165,337 0.682 
Table 5: Overall goodness-of-fit measures. 
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Parameter         DF  Estimate    Std. error  t Value  Pr > |t|  
 M1                  1    -1.5735     0.0865   -18.20   <.0001 
 M2                  1    -3.5681     0.1070   -33.34   <.0001 
 M3                  1    -3.1708     0.1632   -19.43   <.0001 
 Size1               0     1.0000          0 
 Adj                 0     1.0000          0 
 CarAv_1            0     0.3695          0 
 CarAv_2            0     0.3695          0 
 GTC_1              1  -0.0026   0.0002  -16.90   <.0001 
 LOG_GTC2           1    -0.8455     0.0160   -52.94   <.0001 
 FerryTime_1        1  -0.0023   0.0001   -16.62   <.0001 
 FerryTime_2        1  -0.0013  0.0001   -19.33   <.0001 
 AccEgTime_1        1  -0.0059   0.0002   -30.40   <.0001 
 AccEgTime_2        1  -0.0027   0.0002   -17.16   <.0001 
 HeadWayTime_1      1  -0.0020   0.0004    -5.03    <.0001 
 HeadWayTime_2      1  -0.0023   0.0003    -7.94    <.0001 
 Freq_1             1     0.0208   0.0024     8.82    <.0001 
 Freq_2             1   0.0021   0.0033     0.64    0.5251 
 Logsum           1     0.5620   0.0085    66.51    <.0001 
Table 6: Parameter estimates for the business model. 

 

As seen in XTable 6X all LoS parameters have the right sign and are significant except for 

rail frequencies for longer trips. Note that the model includes both a linear (GTC_1) and 

a logarithmic (GTC_2) specification for the generalised cost. The “Adj” term represents 

the sampling adjustment factor described in equation (9). Moreover, for the business 

model, the car availability variables were insignificant. However, due to findings in the 

literature and forecasting abilities of the model, we have pre-fixed a set of parameters. 

The logsum parameter is defined by the “Logsum” parameter and fits nicely within the 

unit interval as required. Tests of the reverse nesting structure revealed approximately 

identical logsum parameters, however, with a weaker model fit. The results for private 

and holiday travel are found in Tables 7 and 8. 

 

Parameter  DF   Estimate  Std. error  t Value   Pr > |t|  
 M1                  1     1.1585     0.1235     9.38    <.0001 
 M2                  1     0.3914     0.1230     3.18    0.0015 
 M3                  1    -0.4388     0.1550    -2.83    0.0047 
 Size2               0     1.0000        0 
 Adj                 0     1.0000          0 
 CarAv_1          1     0.7383     0.0198    37.28    <.0001 
 CarAv_2          1     0.7344     0.0470    15.61    <.0001 
 GTC_1            1  -0.0080   0.0001   -59.63   <.0001 
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 LOG_GTC2     1    -1.7268     0.0249   -69.44   <.0001 
 FerryTime_1    1  -0.0033   0.0002  -14.91   <.0001 
 FerryTime_2    1  -0.0010  0.0001  -12.94   <.0001 
 AccEgTime_1  1  -0.0031   0.0002  -19.54   <.0001 
 HeadWayTime_1      1  -0.0008   0.0004    -1.79    0.0739 
 HeadWayTime_2      1  -0.0002   0.0004    -0.59    0.5584 
 Freq_1             1     0.0108   0.0018     5.86    <.0001 
 Freq_2             1     0.0137   0.0027     5.02    <.0001 
 Logsum           1     0.3748   0.0049    76.53    <.0001 
Table 7: Parameter estimates for the private model.  

 

Parameter          DF   Estimate      Std. error  t Value  Pr > |t|  
 M1                  1    -0.0965     0.0272    -3.55    0.0004 
 M2                  1    -1.1642     0.0248   -46.95   <.0001 
 M3                  1    -1.4419     0.0263   -54.83   <.0001 
 Size3               0     1.0000          0 
 Adj                 0     1.0000          0 
 CarAv_1            1     0.7262     0.0172    42.11    <.0001 
 CarAv_2            1     0.8611     0.0168    51.24    <.0001 
 GTC_1              1  -0.0031  0.0000   -88.40   <.0001 
 LOG_GTC2           1    -0.6402   0.0072  -88.40   <.0001 
 FerryTime_1        1  -0.0003  0.0000   -7.45    <.0001 
 FerryTime_2        1  -0.0016  0.0000   -53.54   <.0001 
 AccEgTime_1        0  -0.0019         0 
 AccEgTime_2        0  -0.0006 0 
 HeadWayTime_1      0  -0.0024 0 
 HeadWayTime_2      0  -0.0010         0 
 Logsum           1     0.3414   0.0028   120.71   <.0001 
Table 8: Parameter estimates for the holiday model.  

Although the holiday segment represents the most observations, not all LoS variables 

have been properly identified. This includes access-egress time, headway time, as well 

as rail frequencies. For access-egress time and headway time parameters from the 

private model have been applied. For rail frequencies, these have simply been taken 

out. Moreover, in the estimation of generalised cost parameters, we experienced 

identification problems. As a result, we have estimate the model under one additional 

constraint, , where  is found from a combination of private and business 

parameters.  

The problems experienced with the holiday segment are not particular surprising 

and arise (partly) from a weak definition of “size”. It is difficult to capture holiday 
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attractiveness of a given destination by the variables included in equation X(8 X). Eymann 

and Ronning (1997) analysed tourist destination choices and found that boundaries for 

preferred choices were determined by language borders, topographical characteristics, 

climate, and distance from home. In other words, the description of attractiveness in 

the present paper falls short of representing many of these dimensions. If attractions 

are weakly described, this tends to “dry out” many of the LoS effects because the travel 

resistance is not properly counteracted by travel attractiveness. A second reason may 

be that the degree of heterogeneity among holiday trips is larger than for business and 

private trips. An example of a source to hidden heterogeneity is the ownership of 

vacation homes, which is likely to be one of the most important determinants for 

destination choice (Hubert and Potier 2003). 

 

5 Results 

In the following we shall present the elasticity structure of the model. Whereas in 

section X4.2 X, parameters were based on a sampled version of the model, elasticities 

presented in the following section will be based on a full-scale simulation with all 1441 

zones included. This is to avoid potential biased from the sampling as regard the 

evaluation of choice probabilities. In addition, car passengers have been included as 

the carP by assuming identical LoS as for car driver (carD) but with zero costs. 

Moreover, alternative constants reflecting base-line market shares have been 

calibrated using the Manski-Lerman approach (Manski and Lerman 1977). Elasticities 

have been based on a simulation of a 25% increase for all involved variables. The 

results are seen in XTable 9 X - XTable 11 X. 

 

Attribute Distance CarD CarP Bus Rail Air 
GTC: CarD Short -0.272 0.525 0.471 0.492 0.503 
  Long -0.294 0.466 0.316 0.323 0.308 
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GTC: CarP Short 0.086 -0.383 0.081 0.084 0.090 
  Long 0.113 -0.593 0.076 0.076 0.073 
GTC: Bus Short 0.054 0.058 -1.179 0.061 0.078 
  Long 0.066 0.069 -0.548 0.141 0.139 
GTC: Rail Short 0.083 0.087 0.090 -0.804 0.128 
  Long 0.058 0.060 0.108 -0.581 0.112 
GTC: Air Short 0.026 0.029 0.034 0.038 -1.247 
  Long 0.031 0.033 0.084 0.082 -0.574 
AccEgr: Rail Short 0.039 0.040 0.049 -0.385 0.051 
  Long 0.031 0.032 0.073 -0.309 0.063 
AccEgr: Air Short 0.028 0.031 0.035 0.036 -1.210 
  Long 0.039 0.041 0.110 0.104 -0.751 
Freq: Rail Short -0.108 -0.110 -0.107 1.128 -0.159 
  Long -0.039 -0.040 -0.039 0.049 -0.052 
FerryTime: CarD Short -0.015 0.051 0.077 0.068 0.113 
  Long -0.223 0.108 0.175 0.166 0.167 
FerryTime: CarP Short 0.017 -0.076 0.037 0.030 0.057 
  Long 0.037 -0.333 0.070 0.066 0.069 
Ferry time: Rail Short 0.001 0.002 0.004 -0.014 0.009 
  Long 0.002 0.003 0.009 -0.043 0.010 
Headway: Air Short 0.013 0.015 0.019 0.016 -0.345 
  Long 0.031 0.034 0.107 0.097 -0.713 
Transfer time: Air Short 0.003 0.004 0.005 0.004 -0.089 
  Long 0.006 0.007 0.026 0.022 -0.165 
Table 9: Business elasticities. 

 

Attribute Distance CarD CarP Bus Rail Air 
GTC: CarD Short -0.669 0.807 0.624 0.705 0.673 
  Long -0.861 0.570 0.449 0.403 0.418 
GTC: CarP Short 0.270 -0.474 0.232 0.278 0.436 
  Long 0.526 -0.906 0.443 0.381 0.398 
GTC: Bus Short 0.139 0.146 -1.570 0.221 0.340 
  Long 0.165 0.179 -1.076 0.309 0.303 
GTC: Rail Short 0.053 0.059 0.069 -1.378 0.097 
  Long 0.085 0.088 0.194 -1.076 0.262 
GTC: Air Short 0.002 0.003 0.004 0.004 -1.711 
  Long 0.010 0.010 0.022 0.031 -1.245 
AccEgr: Rail Short 0.009 0.010 0.017 -0.280 0.021 
  Long 0.004 0.004 0.007 0.007 0.007 
AccEgr: Air Short 0.001 0.001 0.001 0.001 -0.769 
  Long 0.000 0.000 0.000 0.000 0.001 
Freq: Rail Short -0.022 -0.023 -0.027 0.534 -0.035 
  Long -0.040 -0.041 -0.086 0.532 -0.121 
Ferry time: CarD Short -0.016 0.023 0.024 0.033 0.078 
  Long -0.149 0.046 0.086 0.085 0.108 
Ferry time: CarP Short 0.022 -0.054 0.066 0.072 0.288 
  Long 0.064 -0.177 0.154 0.156 0.196 
Ferry time: Rail Short 0.001 0.002 0.004 -0.029 0.013 



20 
 

  Long 0.004 0.004 0.013 -0.056 0.024 
Headway: Air Short 0.000 0.000 0.000 0.000 -0.212 
  Long 0.001 0.001 0.002 0.003 -0.118 
Transfer time: Air Short 0.000 0.000 0.000 0.000 -0.088 
  Long 0.000 0.000 0.001 0.001 -0.037 
Table 10: Private elasticities. 

 

Attribute Distance CarD CarP Bus Rail Air 
GTC: CarD Short -0.479 0.131 0.117 0.123 0.130 
  Long -0.447 0.097 0.078 0.080 0.078 
GTC: CarP Short 0.065 -0.246 0.060 0.063 0.067 
  Long 0.088 -0.455 0.070 0.072 0.069 
GTC: Bus Short 0.333 0.341 -0.725 0.332 0.336 
  Long 0.211 0.212 -0.327 0.226 0.225 
GTC: Rail Short 0.127 0.132 0.121 -0.645 0.134 
  Long 0.091 0.091 0.095 -0.444 0.095 
GTC: Air Short 0.071 0.073 0.068 0.072 -0.753 
  Long 0.085 0.085 0.093 0.093 -0.436 
AccEgr: Rail Short 0.026 0.027 0.028 -0.144 0.024 
  Long 0.017 0.017 0.021 -0.086 0.019 
AccEgr: Air Short 0.046 0.047 0.044 0.046 -0.527 
  Long 0.046 0.045 0.051 0.049 -0.225 
FerryTime: CarD Short -0.005 0.004 0.004 0.004 0.005 
  Long -0.091 0.010 0.015 0.013 0.016 
FerryTime: CarP Short 0.004 -0.010 0.004 0.005 0.006 
  Long 0.010 -0.097 0.016 0.014 0.018 
Ferry time: Rail Short 0.002 0.003 0.002 -0.006 0.002 
  Long 0.003 0.003 0.010 -0.043 0.011 
Headway: Air Short 0.045 0.047 0.044 0.046 -0.458 
  Long 0.067 0.067 0.079 0.077 -0.363 
Transfer time: Air Short 0.012 0.013 0.011 0.012 -0.120 
  Long 0.018 0.018 0.020 0.020 -0.095 
Table 11: Holiday elasticities. 

 

It is seen that for CarD and CarP, GTC elasticities increase by distance in absolute 

value except for car drivers in the holiday segment. However, for the air and rail 

alternative it is the other way round. This is because for these alternatives, the term 

 will actually decrease as a function of distance due to increasing market 

shares for longer trips. This tendency is similar for most other LoS attributes related to 

the air and rail alternatives. Moreover, as parameters for these other LoS variables are 
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estimated using another functional form (only linear), this phenomenon seems to hold 

irrespectively of the functional form. Actually, the decrease in access-egress time and 

rail frequencies for air and rail as a function of distance is very reasonable since these 

may be interpreted as “start-up” costs. The longer the trip the less relative impact of 

these components should be expected.  

Another observation is that there are significant differences among the three trip 

purposes, not only with respect to the size of elasticities, but also with respect to the 

internal weighting of distance impacts.  

 In-vehicle time and cost elasticities cannot be directly determined from the 

above tables. Let however  define the elasticity of the GTC,  the travel time 

elasticity, and  the cost elasticity. It is then easy to show the two following 

identities:  and , where  is the VoT. Clearly, if we 

combine these it can be found that 

(10)  

(11)  

This exposes some of the weaknesses of using a generalised travel cost approach, 

namely that the split between  and  is strongly dependent on the VoT. If a 

general country-wise VoT is used for all modes, it means that for certain expensive 

modes (e.g. the air alternative) the cost share of the elasticity becomes dominating.  

 

Attribute Distance CarD CarP Bus Rail Air 
Cost: CarD Short -0.103 0.205 0.194 0.193 0.212 
  Long -0.151 0.203 0.138 0.139 0.135 
Cost: Bus Short 0.023 0.024 -0.501 0.024 0.027 
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  Long 0.026 0.027 -0.193 0.041 0.039 
Cost: Rail Short 0.056 0.058 0.056 -0.537 0.085 
  Long 0.036 0.037 0.057 -0.331 0.063 
Cost: Air Short 0.023 0.026 0.030 0.033 -1.114 
  Long 0.027 0.029 0.072 0.071 -0.495 
Time: CarD Short -0.165 0.317 0.277 0.298 0.292 
  Long -0.165 0.274 0.187 0.192 0.181 
Time: CarP Short 0.086 -0.383 0.081 0.084 0.090 
  Long 0.113 -0.593 0.076 0.076 0.073 
Time: Bus Short 0.035 0.039 -0.783 0.042 0.057 
  Long 0.045 0.047 -0.392 0.107 0.108 
Time: Rail Short 0.032 0.034 0.039 -0.308 0.050 
  Long 0.026 0.027 0.058 -0.297 0.057 
Time: Air Short 0.004 0.005 0.005 0.006 -0.182 
  Long 0.005 0.006 0.016 0.015 -0.105 
Table 12: Business elasticities for travel cost and time. 

 

Attribute Distance CarD CarP Bus Rail Air 
Cost: CarD Short -0.351 0.427 0.336 0.372 0.374 
  Long -0.531 0.332 0.260 0.229 0.236 
Cost: Bus Short 0.076 0.077 -0.829 0.088 0.105 
  Long 0.077 0.082 -0.472 0.100 0.103 
Cost: Rail Short 0.040 0.044 0.043 -1.027 0.067 
  Long 0.057 0.058 0.114 -0.690 0.170 
Cost: Air Short 0.002 0.003 0.003 0.004 -1.535 
  Long 0.008 0.009 0.019 0.026 -1.074 
Time: CarD Short -0.327 0.393 0.298 0.346 0.324 
  Long -0.404 0.273 0.219 0.201 0.209 
Time: CarP Short 0.270 -0.474 0.232 0.278 0.436 
  Long 0.526 -0.906 0.443 0.381 0.398 
Time: Bus Short 0.080 0.090 -0.950 0.155 0.267 
  Long 0.107 0.117 -0.717 0.234 0.226 
Time: Rail Short 0.018 0.021 0.031 -0.480 0.038 
  Long 0.037 0.040 0.097 -0.502 0.112 
Time: Air Short 0.000 0.001 0.001 0.001 -0.287 
  Long 0.002 0.002 0.005 0.007 -0.273 
Table 13: Private elasticities for travel cost and time. 

 

Attribute Distance CarD CarP Bus Rail Air 
Cost: CarD Short -0.258 0.071 0.063 0.066 0.070 
  Long -0.254 0.054 0.044 0.045 0.044 
Cost: Bus Short 0.176 0.177 -0.381 0.171 0.175 
  Long 0.108 0.109 -0.155 0.105 0.104 
Cost: Rail Short 0.094 0.096 0.088 -0.474 0.099 
  Long 0.065 0.066 0.065 -0.308 0.066 
Cost: Air Short 0.062 0.064 0.059 0.063 -0.670 
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  Long 0.073 0.073 0.080 0.080 -0.371 
Time: CarD Short -0.234 0.065 0.058 0.061 0.064 
  Long -0.228 0.049 0.039 0.040 0.039 
Time: CarP Short 0.065 -0.246 0.060 0.063 0.067 
  Long 0.088 -0.455 0.070 0.072 0.069 
Time: Bus Short 0.170 0.177 -0.373 0.174 0.175 
  Long 0.116 0.115 -0.192 0.134 0.133 
Time: Rail Short 0.038 0.040 0.037 -0.192 0.039 
  Long 0.031 0.031 0.036 -0.166 0.035 
Time: Air Short 0.011 0.011 0.010 0.011 -0.099 
  Long 0.015 0.015 0.017 0.017 -0.083 
Table 14: Holiday elasticities for travel cost and time. 

 

Due to this problem, we have specifically for the air alternative scaled the VoT by a 

factor 2 in order to get a more reliable balancing of the demand responses. This can be 

justified by consulting Tikoudis (2008).  

 

5.1 Results compared to the literature 

Compared to the literature, the size of elasticities seems to be reasonable. However, 

the sample to compare with is not very big and caution should be taken when 

comparing these long-distance trips with trips from other studies with a different 

distance range. For instance, it may be argued that direct car cost elasticities around    

-0.53 for private trips are high compared to elasticities found in many urban studies, 

which are usually in the range of -0.2, -0.5. However, as shown by Daly (2008), 

elasticities for car will tend to increase by distance simply because the  term 

increases. Elasticities obtained by the SAMPERS long-distance model (Beser 2003; 

Chapter 4) indicate a good correspondence, although with some exceptions. Firstly, 

due to the imbalance between time and costs discussed above, our travel time 

elasticities for the air alternative are on the low side. However, for ground mode 

alternatives, elasticities are much in line. In meta-studies by De Jong et al. (2004) and 

De Jong and Gunn (2001) European elasticities are reviewed. Elasticities for car costs 
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between -0.05 and -0.35 as reported by the Dutch model seem to be in line with our 

findings if the distance effect discussed by Daly (2008) is accounted for.  

We also find that, whereas elasticities for car drivers and passengers tend to 

increase by distance, it is the other way round for the rail and air alternatives. This, 

however, conforms well to a meta-study conducted by Brons et al. (2002). Their 

analysis considered air price elasticities for three distance intervals and found a strong 

indication of decreasing elasticities. Although they did not conclude on an average 

value, their median elasticity was in the range of -1.2 to -0.75 and conforms fairly well 

to our findings. In another more recent analysis, (Airbus 2009) air fare elasticities are 

quoted within the range of -0.5 and -1 with -1 referring to domestic flights and -0.5 to 

longer flights including intercontinental trips. This fits well with the above findings where 

the average (weighted) short-distance elasticity for air fares (the cost attribute) is -

0.944 for the short-distance segment and -0.571 for long distances.  

Another finding is that elasticities are lowest for holiday trips, highest for private trips, 

and with business trips in between. Empirically, the literature indicates that business 

trips will be less sensitive compared to private trips (De Jong and Gunn 2001) and 

Gaudry (2002). However, for holiday trips there is rarely any empirical evidence that 

can be used as a benchmark.  

 Finally, the model provides sensitivity analysis for a range of LoS variables not 

often considered in a long-distance modelling context. These include rail frequencies, 

access-egress time for rail and for air, headway time, as well as transfer time. It is 

found that rail demand is very sensitive to rail frequencies as well as to access-egress 

time. Air demand is found to be very sensitive to access-egress time and less sensitive 

to headway time and transfer time. Generally, short-distance trips are more sensitive to 

these LoS components, which is logical since these may be considered as start-up 

costs.  
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6 Conclusion 

More than half of all motorised passenger kilometres in Europe arise from trips above 

100 km. Moreover, as a result of a higher relative CO2 output per kilometre, due to a 

higher share of air transport, this transport segment is responsible for the majority of 

transport related CO2 emissions. The model outlined in the present paper particularly 

focuses on the long-distance transport segment. The model has been developed as 

part of the TRANSTOOL II model framework initiated by the European Commission 

and will enable assessment of European-wide transport policy initiatives including 

taxation scenarios and infrastructure development. More specifically, the model will be 

central to the evaluation of; (i) high-speed rail initiatives in Europe and the substitution 

pattern between air and rail transport in general; (ii) road charging initiatives in an 

European wide perspective; (iii) subsidising schemes for the European Commission of 

large European infrastructure projects  

The model is a long-distance demand model for the choice of mode and 

destination. The model is the first tour-based passenger demand model for Europe. It 

models  trips over 100 km for 42 countries divided into 1441 zones. The model is 

segmented into three trip purposes; business, private, and holiday, and five modes; car 

drivers, car passengers, bus, rail, and air.  A nested logit model is applied for the 

choice of mode conditional on destination. In the estimation, importance sampling has 

been used in order to reduce the choice set to a feasible size. The parameter bias due 

to sampling was analysed and was found to be significantly lower than the standard 

variation of the estimated parameters.  

 In the utility function, a distance-dependent split was applied for all LoS 

variables. Moreover, we analysed several combinations of functional forms and found 

that a linear model for shorter trips (below 600 km) and a logarithmic model for longer 

trips were superior in terms of goodness-of-fit.  
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The results from the model reveal several things. Firstly, the range of elasticities 

conforms well to other models and meta-studies. Secondly, elasticities with respect to 

in-vehicle cost and time (inherited in the generalised cost measure) for car drivers and 

passengers tend to increase with journey distance. This is consistent across all trip 

purposes. Thirdly, for the air and rail alternative the elasticity decreases with distance. 

This is consistent with empirical findings and is due to the fact that the market shares 

for these alternatives increase with distance. This finding is consistent for all trip 

purposes and holds for most other LoS variables related to the air alternative, i.e. 

access-egress time, transfer time, and headway time. This is very logical because 

these LoS components can be considered as start-up costs. Finally, it was also found 

that holiday tours had the lowest elasticities, private the highest, and business in 

between. This pattern is in line with expectations. 

With increasing focus on climate effects, long-distance demand modelling is 

likely to be at the top of the applied research agenda for years to come. Although the 

present paper deals with some of the shortcomings of previous European multi-country 

models, several challenges remain: A detailed analysis of non-linearities with respect to 

distance, better measurement of destination attractions for holiday trips, and combined 

SP/RP surveys in order to better cope with identification problems in the estimation of 

VoT measures. 
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