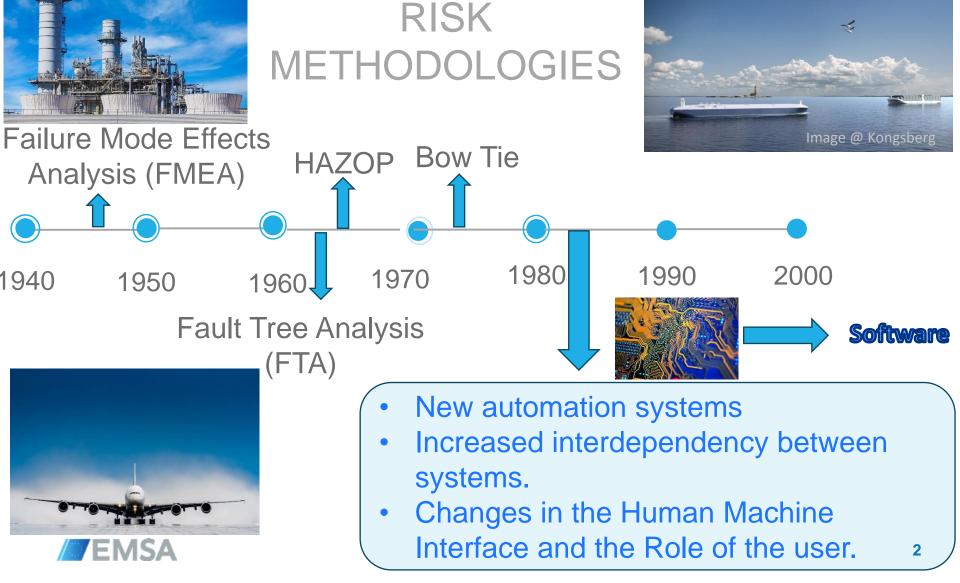
Risk Based Assessment Tool for MASS (RBAT)

5th International Ship Autonomy and Sustainability Summit

Nicolas Charalambous


Department 2: Safety, Security & Surveillance / Unit 2.1

2 September 2024,

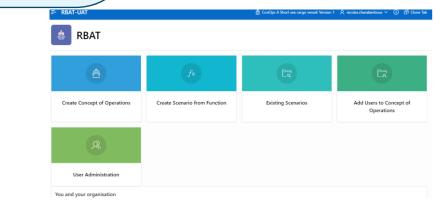
Hamburg

Introduction RBAT

Tailored for autonomous and remotely operated vessels.

RBAT

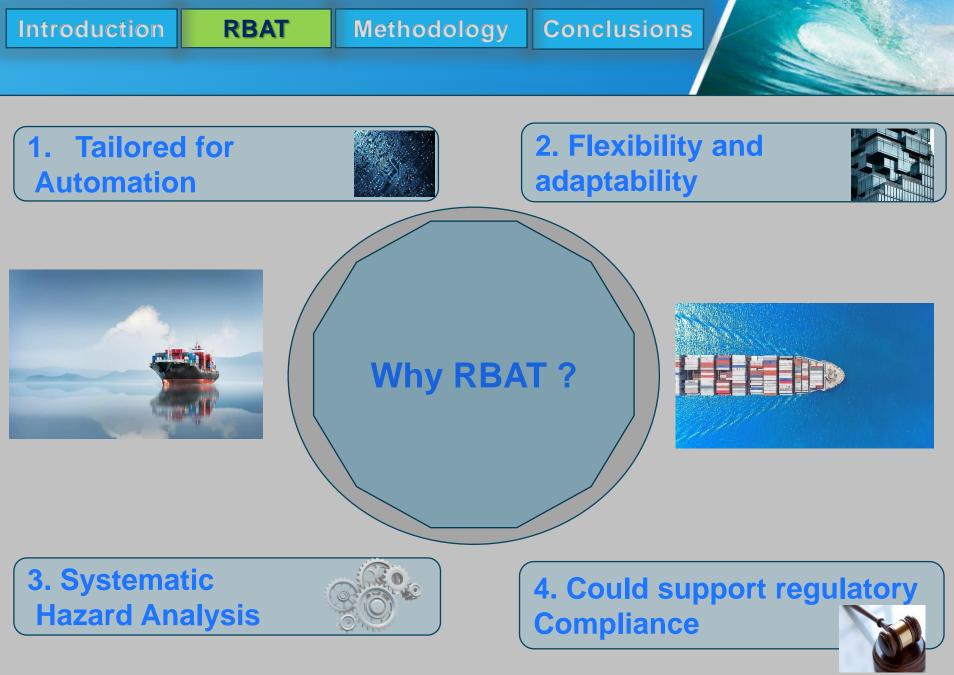
- **Functions** being automated or remotely controlled.
- Addresses risks from transferring

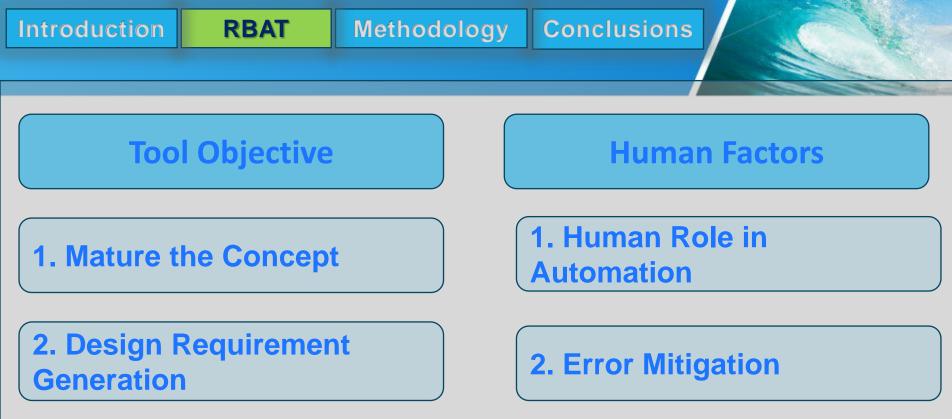

DNV.GL

control.

SAFFMASS

Study of the risks and regulatory issues of specific cases of MASS – Summary ropean Maritime Safety Agency (EMSA)


- Function-based and flexible.
- Adaptable to • different technology stages.
- Focus on • systematic failures and human errors.


What is RBAT?

3. Transparency and Traceability

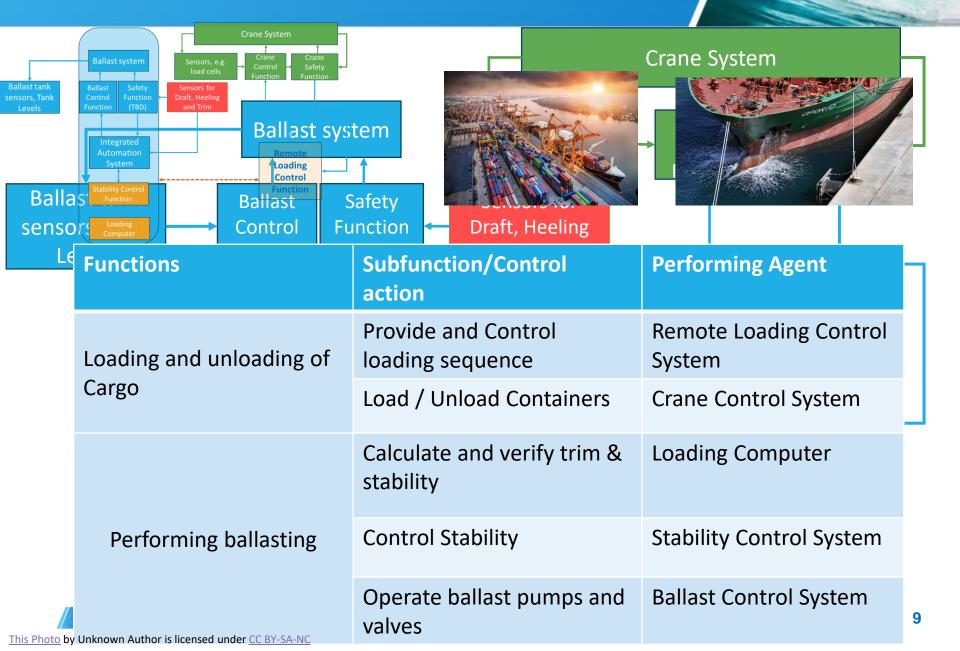
3. Human Machine Interaction


Overcome historical data Function Based Approach Identifies risk in control transfer AVOID CCEPT RISK Systematic Risk Management

This Photo by

6

Missions and operations						
Mission phase	Activities in port					
Functions	Handle and monitor cargo - Plan and prepare cargo handling - Un secure/secure and unload/load cargo					
	 Perform ballasting and trim/list Calculate and verify trim/list and stability Operate ballast pumps 					
	Maintain communication - Communication between vessel and dock crane operator					
Supervision	Active Supervision					



RBAT

Methodology

Conclusions

RBAT

Methodology

Conclusions

Supervisory Control Agents	Supervising	What can trigger supervisor action
Chability Constral Systems	Operate ballast pumps and valves	Alarms from Ballast Control Function
Stability Control System	Control Unloading and loading sequence	Measured heeling draft or trim outside limits
	Control stability	Alarm from the Stability Control Function
Remote Loading Control System	Load/Unload containers	Alarms from Crane control Function
	Load/Unload containers	Communication problems or unexpected feedback from the Crane Function

Introduction	RBAT	ethodology Co	nclusions	CN4-			
Hazard Analysis (Part 2)							
Guidewords	Unsafe condition	Causal factors	Worst case outcome	Incident category			
Too early/late or in wrong order	Loading Sequence not executed as planned	Random hardware failure or systematic failure or	The sequence and weight of containers being loaded/unloaded	Capsize/listing			
		systemic failure in the remote loading control function	in combination with the way ballast is shifted leads to too much heeling and/or wrong trim, of the vessel. Could lead to capsizing at quay or during transit				
Too early/late or in wrong of order	Loading Sequence not fit for purpose	Loading plan not appropriate	Container stacked in the wrong order	Capsize/listing			

Introduction	RBAT	Methodolo	gy Conclus	ions		
Hazard Analysis (Part 2)						
Worst case outcome	Effect on Health Safety and Environment	Enabling Conditions	Exposure to enabling conditions	Operational restrictions	Classification of Health Safety Environment	
Containers stacked in the wrong order and the point of gravity is too high	Significant	Large waves	High	None	Significant	
Combination of loading with the way ballast is shifted, leads to too much heeling and/or wrong trim	Catastrophic	Large waves	High	None	Catastrophic	

Mitigation Analysis (Part 3

Mitigation name	Agent responsible for the activation	Mission phases	Events to which the mitigation is planned	Systems that must function	How humans are involved in executing the mitigation layer
Cargo operator actively supervising start of loading and unloading, can aboard operation	Cargo Operator	Loading/Unloading Cargo	Activation of unloading, ballasting or both.	ROC independent emergency stop	Active Human Supervision

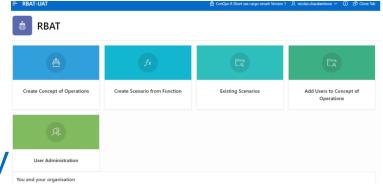
Risk Analysis and Risk Evaluation(Pa

Effectiveness of risk mitigations	Ship & Uptime related Severity					
	None	Negligible	Minor	Significant	Severe	Catastrophic
Low	Low	Low	Medium	High	High	High
Moderate	Low	Low	Low	Medium	High	High
Medium	Low	Low	Low	Medium	Medium	High
High	Low	Low	Low	Low	Medium	High
Very High	Low	Low	Low	Low	Low	Medium
Extremely High	Low	Low	Low	Low	Low	Low

- **Classification of the worst case outcomes**
- Prediction of the effectiveness of the mitigations
- Consider the operational restrictions and other limitations
- Consider the effectiveness of the embedded fault detection isolation and recovery capacity
- Consider the effectiveness of the various mitigations layer that were added to the systems

Mitigation Layers efficiency

Operational Restrictions


RBAT

Introduction

Methodology Conclusions

- Function-Based Approach;
- Novelty in Risk Management;
- Hazard Cause Analysis;
- Human Integration;
- Lack of Historical Data;
- Fallback Functions/States Identification;
- Mitigation Evaluation;
- Critical System Identification;
- Project Alignment;
- Transparency and Traceability

emsa.europa.eu

twitter.com/emsa_lisbonfacebook.com/emsa.lisbon

