

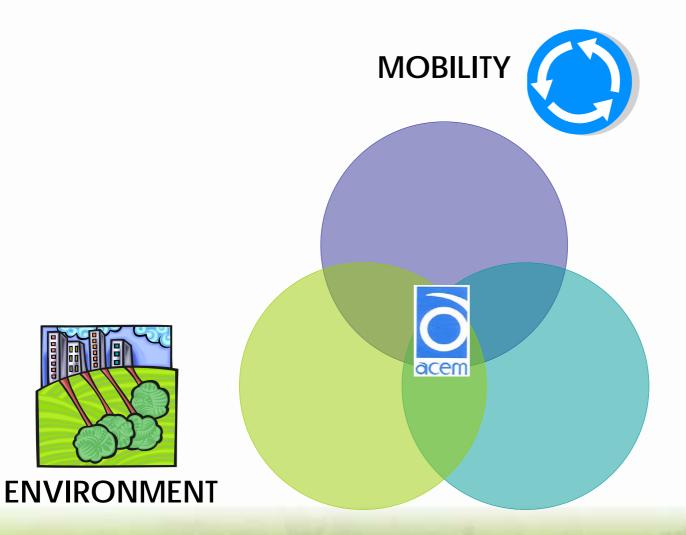
4th ACEM Annual Conference

The Powered Two-Wheeler contribution to better quality of life in cities

Urban Innovations

Urban innovations

- Increasing traffic in European cities and towns calls for new solutions in urban mobility.
- ACEM manufacturers are developing Powered Two Wheeler innovations supporting the urban mobility of citizens, public services and businesses.

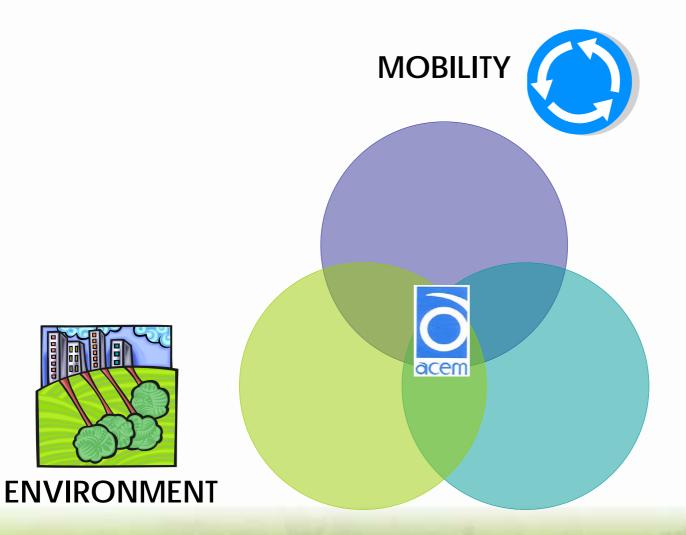

Better quality of life in cities

Urban innovations

BMW C1 with Electrical Engine A Research Vehicle

BMW Motorrad

Brussels November 2007



Urban innovations

Honda and PTW Safety

Honda Safety Concept

Preventive Safety

Traffic education

Riding Trainer

Bloydle trainer

Research on ASV 3 vehicle communication systems

Training of riding and risk prediction skills: Honda has trained more than 40,000 people in Germany

Next activities:

Further expansion of Riding Trainer in Europe Development of ASV 3 Technology

Active Safety Accident avoidance

Advanced braking systems

CBS Dotimum brake

ABS Prevention of wheel look

Combined ABS

Optimum of modern braking technology

In Europe more than 750,000 powered two-wheelers with advanced braking system have been sold by Honda

Next activities:

By the end of 2010 Honda will equip all new models over 250cc with Combined ABS systems

Passive Safety

Reduction of accident consequences

Collision safety

The world's first motorcycle airbag is available for the Honda Gold Wing

World premiere for an airbag-equipped motorcycle at ADAC crashtest facility

ADAC crashtest with Honda Gold Wing

Airbag efficiency is demonstrated by ADAC in a 72km/h side impact crashtest

ADAC Crashtest result:

"The airbag developed by Honda is a milestone in motorcycle safety."

Honda and Fuel Economy

Contributing to reduce CO2

Existing Technology Electronic Fuel Injection

More Environmentally Friendly

- Cleaner exhaust emissions
- Reduced fuel consumption

More User Friendly

- Significantly improved cold starts
- Significantly improved starts after long inactivity
- Stable idling in all situations/weather conditions

Technical challenges

Electronic Fuel Injection for small commuters

Miniaturization

Smaller Lighter Smaller engine capacity

Controlling small fuel amounts

Fuel atomization

Developing country needs

Kick-start (flat battery) Air-cooled engines

Low cost

Cost down Less parts Multi-functionality

Fuel Economy

Achieved improvements

2004 SH150 2005 SH150i

+10%

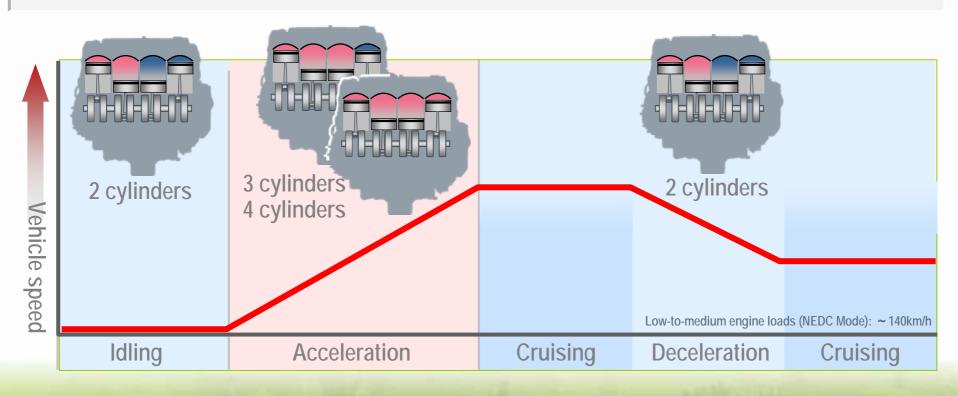
2005 Innova i

+6%

Fuel Efficiency Improved by 13% compared with 2005

Reduced Internal Friction = reduced by 24% between 1995 and 2005

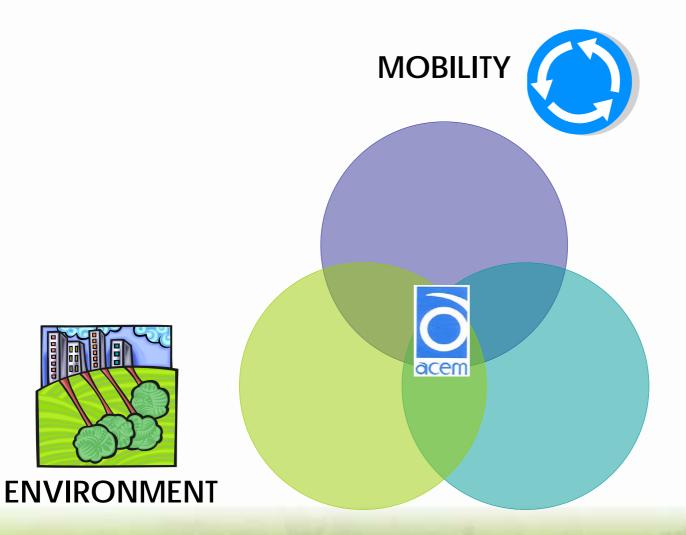
- Increased displacement and higher gearing
- Cylinder offset
- Roller-type rocker arms with needle bearings
- Thinner piston ring
- Reduced piston skirt depth and new surface treatment
- Smaller-diameter crankpin


New Technology: VCM Variable Cylinder Management

+30%

Fuel economy improvement

Compare to 2005 conventional engine



Urban innovations

PIAGGIO

Mobility: 3 global challenges

Mobility in Safety

- In recent years European citizens found in poweredtwo-wheelers (PTW) a way to beat congestion, without sacrificing time schedule flexibility
- The development of individual mobility on PTW brings a potential drawback in road safety, increasing road accidents involving damage to persons, while European cities experience the strong need to reduce gaseous emissions
- Piaggio is tackling both issues, concretising its own concept of sustainable individual mobility

MP3: a *safety* tangible benefit

More and better contact with the ground, better road-holding, homogeneity of behaviour; all this and more is provided by the all-Italian technology implemented in **Piaggio MP3**. The two front wheels guarantee cornering stability beyond that of any other scooter. At speed, even when riding behind large vehicles, the **Piaggio MP3** stays stuck to the road and can always deliver maximum performance in total safety. The benefits of the **three wheel revolution** really make themselves felt on wet roads and in other riding conditions that are critical for conventional two-wheelers. The revolutionary **Piaggio MP3** can stop in **distances so incredibly short** that no other scooter can hope to compete. Thanks to a **triple disc braking system** and the exceptional grip afforded by the two front wheels, **stopping distances are 20% shorter** than those of the best conventional scooters.

Piaggio MP3

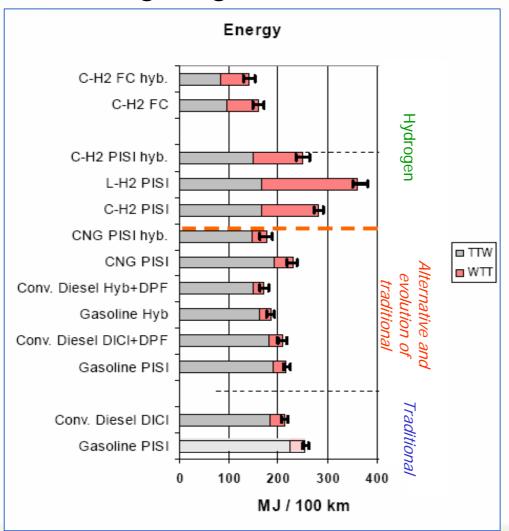
> Better Grip

> Better Stability

Better Braking

Better active safety

Hybrid Powertrain


Hybrid Scooters are not merely 'dual-engine scooters', but absolutely innovative vehicles that combine a low emissions internal combustion engine with a zero-emissions electric motor to create a winning synergy. Piaggio's MP3 HyS Hybrid Scooter is an environment-friendly 'allrounder' with low running costs, and embodies all the innovation, safety and fun that is making Piaggio's revolutionary MP3 three-wheeled scooter so successful.

Why Hybrid in the short/medium term?

Graph comparing the energetic efficiency of different solutions with different fuels, from well to wheel: Hybrid is convenient.

Legend:

PISI: Port Injection Spark Ignition

DICI: Direct Injection Compression Ignition

C-H2: Compressed Hydrogen

L-H2: Liquid Hydrogen

FC: Fuel Cell

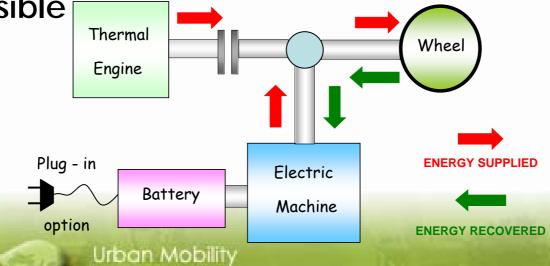
CNG: Compressed Natural Gas

DPF: Diesel Particulate Filter

ICE: Internal Combustion Engine

WTT: Well To Tank

TTW: Tank To Wheel



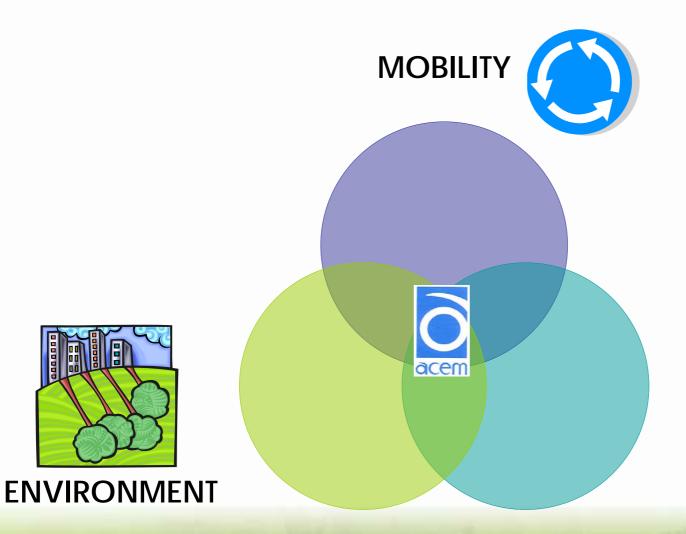
- Piaggio has chosen the parallel hybrid scheme:
 - Both engines can give power to the wheel
 - Battery recharge by thermal engine while running or directly by mains
 - Energy saving into the battery braking or decelerating

Electric mode is possible. Only thermal mode is not possible

HyS: Piaggio Hybrid Scooter

HyS: Piaggio Hybrid Scooter

- Low emissions and fuel consumption 60 km/l (CO₂ 40 g/km) on cycle 65% Hybrid and 35% Electric ZEV – Zero Emission Vehicle in electric
- PHEV Plug-in Hybrid Electric Vehicle
 Battery recharge running, braking or
 decelerating and by mains → cost
 saving, better efficiency and possibility
 to utilize renewable sources
- Better Performances
 Up to 85% by the combination of the two engines (petrol and electric)
- Lithium Battery
 Higher life, less volume and weight



Urban innovations

Yamaha Passol electric moped

Permanent magnet synchronous motor

Yamaha Passol electric moped

Maximum power

1.2kW at 2,250r/min

Maximum torque

7.5N•m at 310r/min

Mass

47kg

(41kg without battery)

Yamaha FC-me Fuel cell

Yamaha Direct Methanol Fuel Cell (DMFC) System

Liquid methanol-water solution

Yamaha FC-me Fuel cell

Maximum power

0.95kW at 1,830 r/min

Maximum torque

5.4N•m at 560 r/min

Mass 69kg

Yamaha FC-AQEL Fuel cell

Yamaha FC-AQEL Fuel cell

Polymer electrolyte fuel cell

Synchronous motor

Secondary battery: Lithium-ion

Hydrogen tanks (35 Mpa)

Fuel cell radiator

Fuel cell module Ultra-thin Yamaha integrated Power Unit (YIPU)

